UCP1 and UCP3 Expression Is Associated with Lipid and Carbohydrate Oxidation and Body Composition

نویسندگان

  • Bruno A. P. Oliveira
  • Marcela A. S. Pinhel
  • Carolina F. Nicoletti
  • Cristiana C. Oliveira
  • Driele C. G. Quinhoneiro
  • Natália Y. Noronha
  • Júlio S. Marchini
  • Ana J. Marchry
  • Wilson S. Junior
  • Carla B. Nonino
چکیده

BACKGROUND/OBJECTIVE Uncoupling proteins (UCPs) are located in the inner membrane of mitochondria. These proteins participate in thermogenesis and energy expenditure. This study aimed to evaluate how UCP1 and UCP3 expression influences substrate oxidation and elicits possible changes in body composition in patients submitted to bariatric surgery. SUBJECTS/METHODS This is a longitudinal study comprising 13 women with obesity grade III that underwent bariatric surgery and 10 healthy weight individuals (control group). Body composition was assessed by bioelectrical impedance. Carbohydrate and fat oxidation was determined by indirect calorimetry. Subcutaneous adipose tissue was collected for gene expression analysis. QPCR was used to evaluate UCP1 and UCP3 expression. RESULTS Obese patients and the control group differed significantly in terms of lipid and carbohydrate oxidation. Six months after bariatric surgery, the differences disappeared. Lipid oxidation correlated with the percentage of fat mass in the postoperative period. Multiple linear regression analysis showed that the UCP1 and UCP3 genes contributed to lipid and carbohydrate oxidation. Additionally, UCP3 expression was associated with BMI, percentage of lean body mass, and percentage of mass in the postoperative period. CONCLUSIONS UCP1 and UCP3 expression is associated with lipid and carbohydrate oxidation in patients submitted to bariatric surgery. In addition, UCP3 participates in body composition modulation six months postoperatively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncoupling protein 3 and fatty acid metabolism.

A role for uncoupling protein (UCP) 3 in fatty acid metabolism is reviewed within the context of our proposal, first put forward in 1998, that this homologue of UCP1 may be involved in the regulation of lipids as fuel substrate rather than in the mediation of thermogenesis. Since then, the demonstrations of muscle-type differences in UCP3 gene regulation in response to dietary manipulations (st...

متن کامل

Uncoupling proteins: their roles in adaptive thermogenesis and substrate metabolism reconsidered.

During the past few years, there have been two major developments, if not revolutions, in the field of energy balance and weight regulation. The first at the molecular level, which was catalysed by developments in DNA screening technology together with the mapping of the human genome, has been the tremendous advances made in the identification of molecules that play a role in the control of foo...

متن کامل

UCP3 and its putative function: consistencies and controversies.

The physiological function of uncoupling protein 3 (UCP3) is as yet unknown. Based on its 57% homology to UCP1 whose physiologic function is uncoupling and thermogenesis, UCP3 was attributed with the function of mitochondrial uncoupling through proton-leak reactions. UCP3 is expressed selectively in muscle, a tissue in which it has been estimated that proton leak accounts for approx. 50% of res...

متن کامل

The expression of UCP3 directly correlates to UCP1 abundance in brown adipose tissue.

UCP1 and UCP3 are members of the uncoupling protein (UCP) subfamily and are localized in the inner mitochondrial membrane. Whereas UCP1's central role in non-shivering thermogenesis is acknowledged, the function and even tissue expression pattern of UCP3 are still under dispute. Because UCP3 properties regarding transport of protons are qualitatively identical to those of UCP1, its expression i...

متن کامل

Differential regulation of expression of genes encoding uncoupling proteins 2 and 3 in brown adipose tissue during lactation in mice.

Thermogenic activity in brown adipose tissue (BAT) decreases during lactation; the down-regulation of the gene encoding uncoupling protein 1 (UCP1) is involved in this process. Our studies show that UCP2 mRNA expression does not change during the breeding cycle in mice. In contrast, UCP3 mRNA is down-regulated in lactation but it recovers after weaning, in parallel with UCP1 mRNA. This leads to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016